Selasa, 21 Juli 2009

GERAK HARMONIK

Setiap gerak yang terjadi secara berulang dalam selang waktu yang sama disebut gerak periodik. Karena gerak ini terjadi secara teratur maka disebut juga sebagai gerak harmonik/harmonis. Apabila suatu partikel melakukan gerak periodik pada lintasan yang sama maka geraknya disebut gerak osilasi/getaran. Bentuk yang sederhana dari gerak periodik adalah benda yang berosilasi pada ujung pegas. Karenanya kita menyebutnya gerak harmonis sederhana. Banyak jenis gerak lain (osilasi dawai, roda keseimbangan arloji, atom dalam molekul, dan sebagainya) yang mirip dengan jenis gerakan ini, sehingga pada kesempatan ini kita akan membahasnya secara mendetail.

Dalam kehidupan sehari-hari, gerak bolak balik benda yang bergetar terjadi tidak tepat sama karena pengaruh gaya gesekan. Ketika kita memainkan gitar, senar gitar tersebut akan berhenti bergetar apabila kita menghentikan petikan. Demikian juga bandul yang berhenti berayun jika tidak digerakan secara berulang. Hal ini disebabkan karena adanya gaya gesekan. Gaya gesekan menyebabkan benda-benda tersebut berhenti berosilasi. Jenis getaran seperti ini disebut getaran harmonik teredam. Walaupun kita tidak dapat menghindari gesekan, kita dapat meniadakan efek redaman dengan menambahkan energi ke dalam sistem yang berosilasi untuk mengisi kembali energi yang hilang akibat gesekan, salah satu contohnya adalah pegas dalam arloji yang sering kita pakai. Pada kesempatan ini kita hanya membahas gerak harmonik sederhana secara mendetail, karena dalam kehidupan sehari-hari terdapat banyak jenis gerak yang menyerupai sistem ini.

GERAK HARMONIS SEDERHANA

Gerak harmonis sederhana yang dapat dijumpai dalam kehidupan sehari-hari adalah getaran benda pada pegas dan getaran benda pada ayunan sederhana. Kita akan mempelajarinya satu persatu.

Gerak Harmonis Sederhana pada Ayunan

Ketika beban digantungkan pada ayunan dan tidak diberikan gaya maka benda akan diam di titik kesetimbangan B. Jika beban ditarik ke titik A dan dilepaskan, maka beban akan bergerak ke B, C, lalu kembali lagi ke A. Gerakan beban akan terjadi berulang secara periodik, dengan kata lain beban pada ayunan di atas melakukan gerak harmonik sederhana.

Besaran fisika pada Gerak Harmonik Sederhana pada ayunan sederhana

Periode (T)

Benda yang bergerak harmonis sederhana pada ayunan sederhana memiliki periode alias waktu yang dibutuhkan benda untuk melakukan satu getaran secara lengkap. Benda melakukan getaran secara lengkap apabila benda mulai bergerak dari titik di mana benda tersebut dilepaskan dan kembali lagi ke titik tersebut.

Pada contoh di atas, benda mulai bergerak dari titik A lalu ke titik B, titik C dan kembali lagi ke B dan A. Urutannya adalah A-B-C-B-A. Seandainya benda dilepaskan dari titik C maka urutan gerakannya adalah C-B-A-B-C.

Jadi periode ayunan (T) adalah waktu yang diperlukan benda untuk melakukan satu getaran (disebut satu getaran jika benda bergerak dari titik di mana benda tersebut mulai bergerak dan kembali lagi ke titik tersebut ). Satuan periode adalah sekon atau detik.

Frekuensi (f)

Selain periode, terdapat juga frekuensi alias banyaknya getaran yang dilakukan oleh benda selama satu detik. Yang dimaksudkan dengan getaran di sini adalah getaran lengkap. Satuan frekuensi adalah 1/sekon atau s-1. 1/sekon atau s-1 disebut juga hertz, menghargai seorang fisikawan. Hertz adalah nama seorang fisikawan tempo doeloe. Silahkan baca biografinya untuk mengenal almahrum eyang Hertz lebih dekat.

Hubungan antara Periode dan Frekuensi

Frekuensi adalah banyaknya getaran yang terjadi selama satu detik/sekon. Dengan demikian selang waktu yang dibutuhkan untuk melakukan satu getaran adalah :

Selang waktu yang dibutuhkan untuk melakukan satu getaran adalah periode. Dengan demikian, secara matematis hubungan antara periode dan frekuensi adalah sebagai berikut :

Amplitudo (f)

Pada ayunan sederhana, selain periode dan frekuensi, terdapat juga amplitudo. Amplitudo adalah perpindahan maksimum dari titik kesetimbangan. Pada contoh ayunan sederhana sesuai dengan gambar di atas, amplitudo getaran adalah jarak AB atau BC.

TUMBUKAN


Hukum Kekekalan Momentum momentum merupakan hasil kali antara massa benda dengan kecepatan gerak benda tersebut. Jadi momentum suatu benda selalu dihubungkan dengan massa dan kecepatan benda. Kita tidak bisa meninjau momentum suatu benda hanya berdasarkan massa atau kecepatannya saja. Pahami baik-baik konsep ini ya….

Pernahkah anda menonton permainan biliard ? lebih baik lagi jika dirimu adalah pemain biliard ;) tuh gambarnya di samping kiri… biasanya pada permainan billiard, kita berusaha untuk memasukan bola ke dalam lubang. Bola yang menjadi target biasanya diam. Jika anda perhatikan secara cermat, kecepatan bola biliard yang disodok menuju bola biliard target menjadi berkurang setelah kedua bola biliard bertumbukan. Sebaliknya, setelah bertumbukan, bola biliard yang pada mulanya diam menjadi bergerak. Berhubung massa bola biliard selalu tetap, maka yang mengalami perubahan adalah kecepatan. Karena bola billiard yang disodok mengalami pengurangan kecepatan setelah tumbukan, maka tentu saja momentumnya juga berkurang. Jika momentum bola billiard yang disodok berkurang, kemanakah momentumnya pergi ? bisa kita tebak, momentum yang hilang pada bola billiard yang disodok berpindah ke bola billiard target. Kok bisa ? ya iyalah :) bola billiard target kan pada mulanya diam, sehingga momentumnya pasti nol. Setelah bertumbukkan, bola billiard tersebut bergerak. Karena bergerak, maka tentu saja bola billiard target memiliki momentum. Jadi momentum bola billiard yang disodok tadi berpindah ke bola billiard target. Dengan demikian kita bisa mengatakan bahwa perubahan momentum pada kedua bola billiard setelah terjadi tumbukan disebabkan karena adanya “perpindahan momentum” dari satu bola billiard ke bola biliard lainnya.

Nah, sekarang pahami penjelasan gurumuda ini baik2 ya….. Pada saat sebelum tumbukan, bola billiard target diam sehingga momentumnya = 0, sedangkan bola billiard yang disodok bergerak dengan kecepatan tertentu; bola billiard yang disodok memiliki momentum. Setelah terjadi tumbukan, kecepatan bola billiard yang disodok berkurang; karenanya momentumnya juga berkurang. Sebaliknya, bola billiard target yang pada mulanya diam menjadi bergerak setelah terjadi tumbukan. Karena bergerak maka kita bisa mengatakan bahwa momentum bola billiard target “bertambah”. Dapatkah kita menyimpulkan bahwa jumlah momentum kedua bola billiard tersebut sebelum tumbukan = jumlah momentum kedua bola billiard setelah tumbukan ?

lakukan percobaan berikut. Letakkan sebuah kelereng pada permukaan lantai yang datar. Setelah itu, tembakkan kelereng yang diam tersebut menggunakan kelereng lainnya dari jarak tertentu. Jika meleset, ulangi sampai kedua kelereng bertumbukan. Amati secara saksama kecepatan gerak kelereng tersebut. Setelah kedua kelereng bertumbukan, kelereng yang pada mulanya diam (tidak memiliki momentum) pasti bergerak (memiliki momentum). Sebaliknya, kelereng yang anda kutik tadi pasti kecepatannya berkurang setelah tumbukan (momentumnya berkurang). Dengan demikian kita bisa mengatakan bahwa momentum kelereng yang dikutik berkurang karena sebagian momentumnya berpindah ke kelereng target yang pada mulanya diam. Dapatkah kita menyimpulkan bahwa jumlah momentum kedua kelereng sebelum tumbukan = jumlah momentum kedua kelereng setelah tumbukan ?

Pada percobaan menumbukan dua bola di atas permukaan meja getar, kita mengitung kecepatan kedua bola sebelum dan setelah tumbukan. Massa bola tetap, sehingga yang diselidiki adalah kecepatannya. Frekuensi getaran meja = frekuensi listrik PLN (50 Hertz). Karena telah diketahui frekuensi getaran meja, maka kita bisa menentukan periode getaran meja. Nah, waktunya sudah diketahui, sekarang tugas kita adalah mengukur panjang jejak bola ketika bergerak di atas meja getar. Karena meja bergetar setiap 0,02 detik (1/50), maka ketika bergerak di atas meja, bola pasti meninggalkan jejak di atas meja yang sudah kita lapisi dengan kertas karbon. Jarak antara satu jejak dengan jejak yang lain; yang ditinggalkan bola setiap 0,02 detik kita ukur. Setelah memperoleh data jarak tempuh bola, selanjutnya kita bisa menghitung kecepatan gerak kedua bola tersebut, baik sebelum tumbukan maupun setelah tumbukan. selanjutnya kita hitung momentum kedua bola sebelum tumbukan (p = mv) dan momentum kedua bola setelah tumbukan (p’ = mv’). Jika percobaan dilakukan dengan baik dan benar, maka kesimpulan yang kita peroleh adalah total momentum dua benda sebelum tumbukan = total momentum kedua benda tersebut setelah tumbukan.

Jika di laboratorium sekolah anda tidak ada meja getar, coba pahami ilustrasi bola biliard atau kelereng di atas secara saksama. Jika sudah paham, anda pasti setuju kalau gurumuda mengatakan bahwa jumlah momentum kedua benda sebelum tumbukan = jumlah momentum kedua benda setelah tumbukan. Pada ilustrasi di atas, sebelum tumbukan salah satu benda diam. Pada dasarnya sama saja bila dua benda sama-sama bergerak sebelum tumbukan. Kecepatan gerak kedua benda tersebut pasti berubah setelah tumbukan, sehingga momentum masing-masing benda juga mengalami perubahan. Kecuali jika massa dan kecepatan dua benda sama sebelum kedua benda tersebut saling bertumbukan. Biasanya total momentum kedua benda sebelum tumbukan = total momentum kedua benda setelah terjadi tumbukan.

Penjelasan panjang lebar dan bertele-tele di atas hanya mau mengantar dirimu untuk memahami inti pokok bahasan ini, yakni Hukum Kekekalan Momentum. Tidak peduli berapapun massa dan kecepatan benda yang saling bertumbukan, ternyata momentum total sebelum tumbukan = momentum total setelah tumbukan. Hal ini berlaku apabila tidak ada gaya luar alias gaya eksternal total yang bekerja pada benda yang bertumbukan. Jadi analisis kita hanya terbatas pada dua benda yang bertumbukan, tanpa ada pengaruh dari gaya luar. Sekarang perhatikan gambar di bawah ini.

Jika dua benda yang bertumbukan diilustrasikan dengan gambar di atas, maka secara matematis, hukum kekekalan momentum dinyatakan dengan persamaan :

Keterangan :

m1 = massa benda 1, m2 = massa benda 2, v1 = kecepatan benda 1 sebelum tumbukan, v2 = kecepatan benda 2 sebelum tumbukan, v’1 = kecepatan benda 1 setelah tumbukan, v’2 = kecepatan benda 2 setelah tumbukan

Jika dinyatakan dalam momentum, maka :

m1v1 = momentum benda 1 sebelum tumbukan, m2v2 = momentum benda 2 sebelum tumbukan, m1v1 = momentum benda 1 setelah tumbukan, m2v2 = momentum benda 2 setelah tumbukan

Hukum Kekekalan Momentum ditemukan melalui percobaan pada pertengahan abad ke-17, sebelum eyang Newton merumuskan hukumnya tentang gerak (mengenai Hukum II Newton versi momentum telah saya jelaskan pada pokok bahasan Momentum, Tumbukan dan Impuls). Walaupun demikian, kita dapat menurunkan persamaan Hukum Kekekalan Momentum dari persamaan hukum II Newton. Yang kita tinjau ini khusus untuk kasus tumbukan satu dimensi, seperti yang dilustrasikan pada gambar di atas.

Kita tulis kembali persamaan hukum II Newton :

Ketika bola 1 dan bola 2 bertumbukan, bola 1 memberikan gaya pada bola 2 sebesar F21, di mana arah gaya tersebut ke kanan (perhatikan gambar di bawah)

Momentum bola 2 dinyatakan dengan persamaan :

Berdasarkan Hukum III Newton (Hukum aksi-reaksi), bola 2 memberikan gaya reaksi pada bola 1, di mana besar F12 = – F21. (Ingat ya, besar gaya reaksi = gaya aksi. Tanda negatif menunjukan bahwa arah gaya reaksi berlawanan dengan arah gaya aksi)

Momentum bola 1 dinyatakan dengan persamaan :

Ini adalah persamaan Hukum Kekekalan Momentum. Hukum Kekekalan Momentum berlaku jika gaya total pada benda-benda yang bertumbukan = 0. Pada penjelasan di atas, gaya total pada dua benda yang bertumbukan adalah F12 + (-F21) = 0. Jika nilai gaya total dimasukan dalam persamaan momentum :

Hukum II Newton


Percepatan sebuah objek berbanding terbaik dengan massa dan berbanding lurus dengan gaya eksternal
Rumus dasarnya adalah :

F = m * a
Dimana F = force ( Gaya ), m = massa, a =percepatan.

Sebagai contoh penerapanya dalam ActionScript, kita punya sebuah objek yang menerima gaya dorong ( keatas ) dan gaya tarik ( kebawah ). Jika gaya dorong lebih besar dari gaya tarik, maka benda akan bergerak keatas.



5.Gravitasi
Gaya tarik gravitasi antar 2 objek dapat dihitung dengan rumus:




F = gaya tarik
G = konstanta gravitasi
m1 = massa objek 1
m2 = massa objek 2
r = jarak antar objek 1 dan 2

kelajuan



Penerapan Rumus Fisika

Nah…..sekarang akan kita bahas rumus-rumus Fisika mana saja sih yang sering dipakai untuk membuat game??? Sebenernya rumusnya sederhana. Yaitu rumus umum yang sudah sering kita pelajari selama ini.

1.Kecepatan ( Velocity )
Kecepatan dan kelajuan hampir sama. Namun bedanya kecepatan adalah besaran skalar, sedangkan kelajuan adalah besaran vektor.
Rumus dasar kecepatan :
v = s/t.
Dimana s adalah jarak dan t adalah waktu.

Hukum termodinamika

Hukum-hukum termodinamika pada prinsipnya menjelaskan peristiwa perpindahan panas dan kerja pada proses termodinamika. Sejak perumusannya, hukum-hukum ini telah menjadi salah satu hukum terpenting dalam fisika dan berbagai cabang ilmu lainnya yang berhubungan dengan termodinamika. Hukum-hukum ini sering dikaitkan dengan konsep-konsep yang jauh melampau hal-hal yang dinyatakan dalam kata-kata rumusannya.

Hukum pertama termodinamika

Hukum Termodinamika Pertama berbunyi "energi tidak dapat diciptakan dan dimusnahkan tetapi dapat dikonversi dari suatu bentuk ke bentuk yang lain." Hukum pertama adalah prinsip kekekalan energi yang memasukan kalor sebagai model perpindahan energi. Menurut hukum pertama, energi dalam suatu benda dapat ditingkatkan dengan menambahkan kalor ke benda atau dengan melakukan usaha pada benda. Hukum pertama tidak membatasi tentang arah perpindahan kalor yang dapat terjadi.


getaran

Getaran adalah suatu gerak bolak-balik di sekitar kesetimbangan. Kesetimbangan di sini maksudnya adalah keadaan dimana suatu benda berada pada posisi diam jika tidak ada gaya yang bekerja pada benda tersebut. Getaran mempunyai amplitudo (jarak simpangan terjauh dengan titik tengah) yang sama.

Jenis getaran

Getaran bebas terjadi bila sistem mekanis dimulai dengan gaya awal, lalu dibiarkan bergetar secara bebas. Contoh getaran seperti ini adalah memukul garpu tala dan membiarkannya bergetar, atau bandul yang ditarik dari keadaan setimbang lalu dilepaskan.

Getaran paksa terjadi bila gaya bolak-balik atau gerakan diterapkan pada sistem mekanis. Contohnya adalah getaran gedung pada saat gempa bumi.

[sunting] Analisis getaran

Dasar analisis getaran dapat dipahami dengan mempelajari model sederhana massa-pegas-peredam kejut. Struktur rumit seperti badan mobil dapat dimodelkan sebagai "jumlahan" model massa-pegas-peredam kejut tersebut. Model ini adalah contoh osilator harmonik sederhana.

[sunting] Getaran bebas tanpa peredam

Model massa-pegas sederhanal

Pada model yang paling sederhana redaman dianggap dapat diabaikan, dan tidak ada gaya luar yang mempengaruhi massa (getaran bebas).

Dalam keadaan ini gaya yang berlaku pada pegas Fs sebanding dengan panjang peregangan x, sesuai dengan hukum Hooke, atau bila dirumuskan secara matematis:

F_s=- k x \!

dengan k adalah tetapan pegas.

Sesuai Hukum kedua Newton gaya yang ditimbulkan sebanding dengan percepatan massa:

\Sigma\ F = ma  =   m \ddot{x}  =  m \frac{d^2x}{dt^2} =

Karena F = Fs, kita mendapatkan persamaan diferensial biasa berikut:

m \ddot{x} + k x = 0.
Gerakan harmonik sederhana sistem benda-pegas

Bila kita menganggap bahwa kita memulai getaran sistem dengan meregangkan pegas sejauh A kemudian melepaskannya, solusi persamaan di atas yang memerikan gerakan massa adalah:

x(t) =  A \cos (2 \pi f_n  t) \!

Solusi ini menyatakan bahwa massa akan berosilasi dalam gerak harmonis sederhana yang memiliki amplitudo A dan frekuensi fn. Bilangan fn adalah salah satu besaran yang terpenting dalam analisis getaran, dan dinamakan frekuensi alami takredam. Untuk sistem massa-pegas sederhana, fn didefinisikan sebagai:

f_n    =   {1\over {2 \pi}} \sqrt{k \over m} \!

Catatan: frekuensi sudut ω (ω = 2πf) dengan satuan radian per detik kerap kali digunakan dalam persamaan karena menyederhanakan persamaan, namun besaran ini biasanya diubah ke dalam frekuensi "standar" (satuan Hz) ketika menyatakan frekuensi sistem.

Bila massa dan kekakuan (tetapan k) diketahui frekuensi getaran sistem akan dapat ditentukan menggunakan rumus di atas.

[sunting] Getaran bebas dengan redaman

Mass Spring Damper Model

Bila peredaman diperhitungkan, berarti gaya peredam juga berlaku pada massa selain gaya yang disebabkan oleh peregangan pegas. Bila bergerak dalam fluida benda akan mendapatkan peredaman karena kekentalan fluida. Gaya akibat kekentalan ini sebanding dengan kecepatan benda. Konstanta akibat kekentalan (viskositas) c ini dinamakan koefisien peredam, dengan satuan N s/m (SI)


F_d  =  - c v  = - c \dot{x} =  - c \frac{dx}{dt} \!

Dengan menjumlahkan semua gaya yang berlaku pada benda kita mendapatkan persamaan

m \ddot{x} + { c } \dot{x} + {k } x = 0.

Solusi persamaan ini tergantung pada besarnya redaman. Bila redaman cukup kecil, sistem masih akan bergetar, namun pada akhirnya akan berhenti. Keadaan ini disebut kurang redam, dan merupakan kasus yang paling mendapatkan perhatian dalam analisis vibrasi. Bila peredaman diperbesar sehingga mencapai titik saat sistem tidak lagi berosilasi, kita mencapai titik redaman kritis. Bila peredaman ditambahkan melewati titik kritis ini sistem disebut dalam keadaan lewat redam.

Nilai koefisien redaman yang diperlukan untuk mencapai titik redaman kritis pada model massa-pegas-peredam adalah:

c_c= 2 \sqrt{k m}

Untuk mengkarakterisasi jumlah peredaman dalam sistem digunakan nisbah yang dinamakan nisbah redaman. Nisbah ini adalah perbandingan antara peredaman sebenarnya terhadap jumlah peredaman yang diperlukan untuk mencapai titik redaman kritis. Rumus untuk nisbah redaman (ζ) adalah

\zeta = { c \over 2 \sqrt{k m} }.

Sebagai contoh struktur logam akan memiliki nisbah redaman lebih kecil dari 0,05, sedangkan suspensi otomotif akan berada pada selang 0,2-0,3.

Solusi sistem kurang redam pada model massa-pegas-peredam adalah

x(t)=X  e^{-\zeta \omega_n t} \cos({\sqrt{1-\zeta^2} \omega_n t - \phi}) , \    \ \omega_n= 2\pi f_n


listrik statis

Fluida ( zat alir ) adalah zat yang dapat mengalir, misalnya zat cair dan gas. Fluida dapat digolongkan dalam dua macam, yaitu fluida statis dan dinamis.

TEKANAN HIDROSTATIS

Tekanan hidrostatis ( Ph) adalah tekanan yang dilakukan zat cair pada bidang dasar tempatnya.


PARADOKS HIDROSTATIS

Gaya yang bekerja pada dasar sebuah bejana tidak tergantung pada bentuk bejana dan jumlah zat cair dalam bejana, tetapi tergantung pada luas dasar bejana ( A ), tinggi ( h ) dan massa jenis zat cair ( r )
dalam bejana.

Ph = r g h
Pt = Po + Ph
F = P h A = r g V
r = massa jenis zat cair
h = tinggi zat cair dari permukaan
g = percepatan gravitasi
Pt = tekanan total
Po = tekanan udara luar

HUKUM PASCAL

Tekanan yang dilakukan pada zat cair akan diteruskan ke semua arah sama.

P1 = P2 ® F1/A1 = F2/A2

HUKUM ARCHIMEDES

Benda di dalam zat cair akan mengalami pengurangan berat sebesar berat zat cair yang dipindahkan.

Tiga keadaan benda di dalam zat cair:

a. tenggelam: W>Fa Þ rb > rz

b. melayang: W = Fa Þ rb = rz

c. terapung: W=Fa Þ rb.V=rz.V' ; rb<rz

W = berat benda
Fa = gaya ke atas = rz . V' . g
rb = massa jenis benda
rz = massa jenis fluida
V = volume benda
V' = volume benda yang berada dalam fluida

Akibat adanya gaya ke atas ( Fa ), berat benda di dalam zat cair (Wz) akan berkurang menjadi:

Wz = W - Fa

Wz = berat benda di dalam zat cair

TEGANGAN PERMUKAAN

Tegangan permukaan ( g) adalah besar gaya ( F ) yang dialami pada permukaan zat cair persatuan panjang(l)

g = F / 2l

KAPILARITAS

Kapilaritas ialah gejala naik atau turunnya zat cair ( y ) dalam tabung kapiler yang dimasukkan sebagian ke dalam zat cair karena pengarah adhesi dan kohesi.

y = 2 g cos q / r g r

y = kenaikan/penurunan zat cair pada pipa (m)
g = tegangan permukaan (N/m)
q = sudut kontak (derajat)
p
= massa jenis zat cair (kg / m3)
g = percepatan gravitas (m / det2)
r = jari-jari tabung kapiler (m)

kuliah

bola

setujukah anda pemilu 8 juli 2099